

NXT17-017 - Applying a new UV laser-based module to monitor protein-protein interactions after DNA damage using time-resolved spectroscopy

Zusammenfassung

Schädigungen der DNA stellen eine immanente Gesundheitsbedrohung dar und können letztendlich eine Vielzahl von Erkrankungen bis hin zu Krebs mitverantwortlich auslösen. Umso essentieller ist es, dass funktionsspezifische DNA-Reparaturproteine in akkordierter Zeitabfolge an diese DNA-Schäden andocken. Genannte Zeitabfolge wird duch koordinierte Protein-Protein-Interaktionen gewährleistet. Diese Interaktionen wurden bislang eher in einem gesamtheitlichen Kontext untersucht, wodurch komplexere Abläufe bei der DNA-Reparatur nicht klar ersichtlich sind. Daher sieht unser Plan vor, Interaktionen von DNA-Reparaturproteinen auf Einzelzellniveau, sowohl quantitativ als auch dynamisch zu untersuchen. Ein bestehendes Konfokalmikroskop mit integrierter Fluoreszenz-Lebenszeitmessung wurde mit einem steuerbaren UV-Lasermodul adaptiert, um diese Versuche durchführen zu können. Unser "NEXT"-Ziel wäre es dieses neuartige Setup, nach erfolgter wissenschaftlicher Beweisführung, auf eine kommerzielle Schiene zu setzen. Dieser Wissenstransfer bezieht sich hauptsächlich auf die Systemintegration des UV-basierten DNA-Schädigungsaufbaus in kommerzielle, schlüsselfertige Mikroskopie/Spektroskopie-Lösungen.

Keywords:

DNA damage, FLIM-FRET, laser microirradiation

Principal Investigator: Dea Slade

Institution: Max Perutz Labs

Weitere Kareem Elsayad (Vienna Biocenter Core Facilities (VBCF))

Projektpartner:innen: Josef Gotzmann (Medical University of Vienna)

Status: Abgeschlossen (01.12.2017 - 31.03.2019)

GrantID: 10.47379/NXT17017

Weiterführende Links zu den beteiligten Personen und zum Projekt finden Sie unter https://wwtf.at/funding/programmes/ei/NXT17-017/